منابع مشابه
On subnormal operators whose spectrum are multiply connected domains
Let Ω be a connected bounded domain with a finite amount of “holes” and “nice boundary”. We study subnormal operators with spectrum equal to Ω, while the spectrum of their normal extensions are supported on the boundary, ∂Ω.
متن کاملExistence of Non-subnormal Polynomially Hyponormal Operators
In 1950, P. R. Halmos, motivated in part by the successful development of the theory of normal operators, introduced the notions of subnormality and hyponormality for (bounded) Hilbert space operators. An operator T is subnormal if it is the restriction of a normal operator to an invariant subspace; T is hyponormal if T*T > TT*. It is a simple matrix calculation to verify that subnormality impl...
متن کاملHyperinvariant Subspaces for Some Subnormal Operators
In this article we employ a technique originated by Enflo in 1998 and later modified by the authors to study the hyperinvariant subspace problem for subnormal operators. We show that every “normalized” subnormal operator S such that either {(S∗nSn)1/n} does not converge in the SOT to the identity operator or {(SnS∗n)1/n} does not converge in the SOT to zero has a nontrivial hyperinvariant subsp...
متن کاملLifting strong commutants of unbounded subnormal operators
Various theorems on lifting strong commutants of unbounded sub-normal (as well as formally subnormal) operators are proved. It is shown that the strong symmetric commutant of a closed symmetric operator S lifts to the strong commutant of some tight selfadjoint extension of S. Strong symmetric commutants of orthogonal sums of subnormal operators are investigated. Examples of (unbounded) irreduci...
متن کاملTopology of Quadrature Domains
Formulas like (0.1) and (0.2) are called quadrature identities, and the corresponding domains of integration are called (classical) quadrature domains. Various classes of quadrature domains have been known for quite some time, see e.g. Neumann’s papers [39, 40] from the beginning of the last century, but the systematic study began only with the work of Davis [13], and Aharonov and Shapiro [2]. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 1997
ISSN: 0001-8708
DOI: 10.1006/aima.1997.1619